2・8型(階比型)の漸化式
タイプ:難関大対策 レベル:★★★★

難易度がやや高く,教えるのも難しいタイプです.
$f(n)$ を取り急ぎ階比数列と当サイトでは呼ぶことにします.
例題と解法まとめ
例題
2・8型(階比型) $a_{n+1}=f(n)a_{n}$
数列 $\{a_{n}\}$ の一般項を求めよ.
$a_{1}=2$,$a_{n+1}=\dfrac{n+2}{n}a_{n}$
講義
解法ですがなんとか,$\boldsymbol{n}$ のナンバリングの対応が揃うように変形します(ここが慣れが必要で難しい).
今回は両辺 $(n+1)(n+2)$ で割ると
$\dfrac{a_{n+1}}{(n+1)(n+2)}=\dfrac{a_{n}}{n(n+1)}$
となり,右辺の $\boldsymbol{n}$ のナンバリングを1つ上げたものが左辺になります.
上で $b_{n}=\dfrac{a_{n}}{n(n+1)}$ とおくと
$b_{n+1}=b_{n}$
となるので,$b_{n}$,$a_{n}$ の順に一般項を出せます.
解答
両辺 $(n+1)(n+2)$ で割ると
$\dfrac{a_{n+1}}{(n+1)(n+2)}=\dfrac{a_{n}}{n(n+1)}$
ここで $b_{n}=\dfrac{a_{n}}{n(n+1)}$ とおくと
$b_{n+1}=b_{n}=b_{n-1}=\cdots=b_{1}=\dfrac{a_{1}}{1\cdot2}=1$
となるので
$a_{n}=n(n+1)b_{n}$
$\therefore \ \boldsymbol{a_{n}=n(n+1)}$
解法まとめ
$a_{n+1}=f(n)a_{n}$ の解法まとめ
① なんとか $\boldsymbol{n}$ のナンバリングの対応が揃うように変形します
$g(n+1)a_{n+1}=p \cdot g(n)a_{n}$
↓
② $b_{n}=g(n)a_{n}$ とおいて,$\{b_{n}\}$ の一般項を出す.
↓
③ $\{a_{n}\}$ の一般項を出す.
練習問題
練習
数列 $\{a_{n}\}$ の一般項を求めよ.
(1) $a_{1}=2$,$na_{n+1}=\dfrac{1}{3}(n+1)a_{n}$
(2) $a_{1}=\dfrac{7}{2}$,$(n+2)a_{n+1}=7na_{n}$
(3) $a_{1}=1$,$a_{n}=\left(1-\dfrac{1}{n^{2}}\right)a_{n-1}$ $(n\geqq 2)$
練習の解答