おいしい数学HOME

和積(積和)変換公式

タイプ:教科書範囲 レベル:★★★ 


アイキャッチ

三角関数の和積変換公式,積和変換公式について扱い,習得できるよう演習問題を用意しました.

数Ⅱだと発展的内容になりますが,数Ⅲ(三角関数の積分)で登場しよく使用する公式です.





和積(積和)変換公式

ポイント

任意の実数$\alpha$,$\beta$ に対して以下が成り立つ.

和積変換公式

(ⅰ) $\boldsymbol{\sin(\alpha+\beta)+\sin(\alpha-\beta)=2\sin\alpha\cos\beta}$

(ⅱ) $\boldsymbol{\sin(\alpha+\beta)-\sin(\alpha-\beta)=2\cos\alpha\sin\beta}$

(ⅲ) $\boldsymbol{\cos(\alpha+\beta)+\cos(\alpha-\beta)=2\cos\alpha\cos\beta}$

(ⅳ) $\boldsymbol{\cos(\alpha+\beta)-\cos(\alpha-\beta)=-2\sin\alpha\sin\beta}$


積和変換公式

(ⅰ) $\boldsymbol{\sin\alpha\cos\beta=\dfrac{1}{2}\{\sin(\alpha+\beta)+\sin(\alpha-\beta)\}}$

(ⅱ) $\boldsymbol{\cos\alpha\sin\beta=\dfrac{1}{2}\{\sin(\alpha+\beta)-\sin(\alpha-\beta)}\}$

(ⅲ) $\boldsymbol{\cos\alpha\cos\beta=\dfrac{1}{2}\{\cos(\alpha+\beta)+\cos(\alpha-\beta)\}}$

(ⅳ) $\boldsymbol{\sin\alpha\sin\beta=-\dfrac{1}{2}\{\cos(\alpha+\beta)-\cos(\alpha-\beta)\}}$


本質は加法定理をただ組み合わせただけです.

和→積に変える和積変換公式の証明は,加法定理を適用するだけで簡単なので割愛します.覚えるのではなく,導けるようにします

積→和に変える積和変換公式は,和積変換公式の同じ式番号をただ両辺入れ替えて $2$ で割っただけです.これも覚えるのではなく,導けるようにします




例題と練習問題

例題

例題

次の三角関数が和の形であれば積に,積の形であれば和に変形せよ.

(1) $\sin4\theta+\sin2\theta$

(2) $\cos6\theta+\cos2\theta$

(3) $\sin5\theta\cos\theta$

(4) $\sin4\theta\sin2\theta$


講義

(1)(2)は和積変換公式そのままです.2つの角度の平均からのずれで加法定理を適用します.

(3)(4)は親となる加法定理を思い浮かべます.


解答

(1)

 $\sin4\theta+\sin2\theta$

$=\sin(3\theta+\theta)+\sin(3\theta-\theta)$ ←角度の平均は $3\theta$ でずれが $\theta$

$=\sin3\theta\cos\theta+\cos3\theta\sin\theta+\sin3\theta\cos\theta-\cos3\theta\sin\theta$

$=\boldsymbol{2\sin3\theta\cos\theta}$


(2)

 $\cos6\theta+\cos2\theta$

$=\cos(4\theta+\theta)+\cos(4\theta-2\theta)$ ←角度の平均は $4\theta$ でずれが $2\theta$

$=\cos4\theta\cos2\theta-\sin4\theta\sin2\theta+\cos4\theta\cos2\theta+\sin4\theta\sin2\theta$

$=\boldsymbol{2\cos4\theta\cos2\theta}$


(3)

 $\sin5\theta\cos\theta$ ←これが出る加法定理を考える

$=\dfrac{1}{2}\{\sin(5\theta+\theta)+\sin(5\theta-\theta)\}$

$=\boldsymbol{\dfrac{1}{2}(\sin6\theta+\sin4\theta)}$


(4)

 $\sin4\theta\sin2\theta$ ←これが出る加法定理を考える

$=-\dfrac{1}{2}\{\cos(4\theta+2\theta)-\cos(4\theta-2\theta)\}$

$=\boldsymbol{\dfrac{1}{2}(\cos2\theta-\cos6\theta)}$



練習問題

練習

次の三角関数が和の形であれば積に,積の形であれば和に変形せよ.

(1) $\cos3\theta+\cos5\theta$

(2) $\sin4\theta-\sin3\theta$

(3) $\sin6\theta\cos4\theta$

(4) $\cos5\theta\cos3\theta$

練習の解答



ノートに戻る